4 research outputs found

    A Hybrid Chimp Optimization Algorithm and Generalized Normal Distribution Algorithm with Opposition-Based Learning Strategy for Solving Data Clustering Problems

    Full text link
    This paper is concerned with data clustering to separate clusters based on the connectivity principle for categorizing similar and dissimilar data into different groups. Although classical clustering algorithms such as K-means are efficient techniques, they often trap in local optima and have a slow convergence rate in solving high-dimensional problems. To address these issues, many successful meta-heuristic optimization algorithms and intelligence-based methods have been introduced to attain the optimal solution in a reasonable time. They are designed to escape from a local optimum problem by allowing flexible movements or random behaviors. In this study, we attempt to conceptualize a powerful approach using the three main components: Chimp Optimization Algorithm (ChOA), Generalized Normal Distribution Algorithm (GNDA), and Opposition-Based Learning (OBL) method. Firstly, two versions of ChOA with two different independent groups' strategies and seven chaotic maps, entitled ChOA(I) and ChOA(II), are presented to achieve the best possible result for data clustering purposes. Secondly, a novel combination of ChOA and GNDA algorithms with the OBL strategy is devised to solve the major shortcomings of the original algorithms. Lastly, the proposed ChOAGNDA method is a Selective Opposition (SO) algorithm based on ChOA and GNDA, which can be used to tackle large and complex real-world optimization problems, particularly data clustering applications. The results are evaluated against seven popular meta-heuristic optimization algorithms and eight recent state-of-the-art clustering techniques. Experimental results illustrate that the proposed work significantly outperforms other existing methods in terms of the achievement in minimizing the Sum of Intra-Cluster Distances (SICD), obtaining the lowest Error Rate (ER), accelerating the convergence speed, and finding the optimal cluster centers.Comment: 48 pages, 14 Tables, 12 Figure

    An Efficient High-Dimensional Gene Selection Approach based on Binary Horse Herd Optimization Algorithm for Biological Data Classification

    Full text link
    The Horse Herd Optimization Algorithm (HOA) is a new meta-heuristic algorithm based on the behaviors of horses at different ages. The HOA was introduced recently to solve complex and high-dimensional problems. This paper proposes a binary version of the Horse Herd Optimization Algorithm (BHOA) in order to solve discrete problems and select prominent feature subsets. Moreover, this study provides a novel hybrid feature selection framework based on the BHOA and a minimum Redundancy Maximum Relevance (MRMR) filter method. This hybrid feature selection, which is more computationally efficient, produces a beneficial subset of relevant and informative features. Since feature selection is a binary problem, we have applied a new Transfer Function (TF), called X-shape TF, which transforms continuous problems into binary search spaces. Furthermore, the Support Vector Machine (SVM) is utilized to examine the efficiency of the proposed method on ten microarray datasets, namely Lymphoma, Prostate, Brain-1, DLBCL, SRBCT, Leukemia, Ovarian, Colon, Lung, and MLL. In comparison to other state-of-the-art, such as the Gray Wolf (GW), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA), the proposed hybrid method (MRMR-BHOA) demonstrates superior performance in terms of accuracy and minimum selected features. Also, experimental results prove that the X-Shaped BHOA approach outperforms others methods

    Opinion Dynamics in Social Multiplex Networks with Mono and Bi-directional Interactions in the Presence of Leaders

    Full text link
    We delve into the dynamics of opinions within a multiplex network using coordination games, where agents communicate either in a one-way or two-way interactions, and where a designated leader may be present. By employing graph theory and Markov chains, we illustrate that despite non-positive diagonal elements in transition probability matrices or decomposable layers, opinions generally converge under specific conditions, leading to a consensus. We further scrutinize the convergence rates of opinion dynamics in networks with one-way versus two-way interactions. We find that in networks with a designated leader, opinions converge towards the initial opinion of the leader, whereas in networks without a designated leader, opinions converge to a convex combination of the opinions of agents. Moreover, we emphasize the crucial role of designated leaders in steering opinion convergence within the network. Our experimental findings corroborate that the presence of leaders expedites convergence, with mono-directional interactions exhibiting notably faster convergence rates compared to bidirectional interactions

    A comprehensive survey of research towards AI-enabled unmanned aerial systems in pre-, active-, and post-wildfire management

    Full text link
    Wildfires have emerged as one of the most destructive natural disasters worldwide, causing catastrophic losses in both human lives and forest wildlife. Recently, the use of Artificial Intelligence (AI) in wildfires, propelled by the integration of Unmanned Aerial Vehicles (UAVs) and deep learning models, has created an unprecedented momentum to implement and develop more effective wildfire management. Although some of the existing survey papers have explored various learning-based approaches, a comprehensive review emphasizing the application of AI-enabled UAV systems and their subsequent impact on multi-stage wildfire management is notably lacking. This survey aims to bridge these gaps by offering a systematic review of the recent state-of-the-art technologies, highlighting the advancements of UAV systems and AI models from pre-fire, through the active-fire stage, to post-fire management. To this aim, we provide an extensive analysis of the existing remote sensing systems with a particular focus on the UAV advancements, device specifications, and sensor technologies relevant to wildfire management. We also examine the pre-fire and post-fire management approaches, including fuel monitoring, prevention strategies, as well as evacuation planning, damage assessment, and operation strategies. Additionally, we review and summarize a wide range of computer vision techniques in active-fire management, with an emphasis on Machine Learning (ML), Reinforcement Learning (RL), and Deep Learning (DL) algorithms for wildfire classification, segmentation, detection, and monitoring tasks. Ultimately, we underscore the substantial advancement in wildfire modeling through the integration of cutting-edge AI techniques and UAV-based data, providing novel insights and enhanced predictive capabilities to understand dynamic wildfire behavior
    corecore